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Risks and Benefits of Fluid Administration as Assessed by Ultrasound

Scott J. Millington, MD; Katie Wiskar, MD; Hailey Hobbs, MD; and Seth Koenig, MD
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REV 5.6
For patients in shock, decisions regarding administering or withholding IV fluids are both

difficult and important. Although a strategy of relatively liberal fluid administration has tradi-

tionally been popular, recent trial results suggest that moving to a more fluid-restrictive

approach may be prudent. The goal of this article was to outline how whole-body point-of-

care ultrasound can help clarify both the possible benefits and the potential risks of fluid

administration, aiding in the risk/benefit calculations that should always accompany fluid-

related decisions. CHEST 2021; -(-):---
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ecisions regarding IV fluid administration
re both important and difficult.
undamental practices such as early
ntibiotic administration and infectious
ource control have become widespread and
onsistent, and thus physicians caring for
atients with sepsis are often left to struggle
rimarily with decisions regarding how much
uid to administer. Although a strategy of
elatively liberal fluid administration was
opular in previous decades, recent trial
esults suggest a more fluid-restrictive
pproach as the potential harms of over-
esuscitation have become more apparent.1

he potential benefits of IV fluids are
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re also fluid responsive (FR), defined as a
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there is a clear potential benefit to fluid
administration.4 Cardiac output can be
increased, and oxygen delivery thereafter
improved. Although a state of shock is
relatively easy to diagnose by physical
examination and laboratory assessment, an
FR state is not. This situation is aggravated by
the fact that critically ill patients consistently
have a near “perfect” 50% probability of being
in an FR state, indicating that we are typically
operating in a zone of complete uncertainty.5

In the face of uncertain potential benefit, it
becomes particularly important to consider
potential harm. Fluid overload may cause
deleterious effects in multiple organ systems,
including pulmonary edema, renal
dysfunction, intraabdominal hypertension,
delirium, cerebral edema, and impaired
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wound healing, among others.6-8 Thinking more
globally, a positive fluid balance has been associated with
increased duration of mechanical ventilation, longer
hospital stay, and higher mortality in several cohorts.9-11

Despite this multitude of risks, current guidelines do not
provide clear stopping points for fluid administration in
sepsis and underemphasize the potential harms of over-
resuscitation.12
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Case Example
A 65-year-old man with hypertension, heart failure with
preserved ejection fraction, and previous nephrolithiasis
presents with fever, left-sided flank pain, and hypotension.
His urinalysis is strongly positive for nitrites and leukocyte
esterase, and his creatinine and lactate levels are elevated.
The emergency physician has administered 3 L of IV
balanced crystalloid and appropriate antibiotics, but the
patient remains hypotensive, acidotic, and oliguric.
Furthermore, the patient is tachypneic at 28 breaths/min
and is now requiring 3 L of oxygen via nasal cannula to
maintain an oxygen saturation of 93%. Should more fluid
be administered?
FA B

C D

Figure 1 – A-D, Analysis of the inferior vena cava (IVC) for fluid responsivene
here a phased-array transducer is held just below the xiphoid process with the
of a thin IVC (arrow) in B-mode; the hepatic vein (dashed arrow) and right at
with the end-expiratory diameter (here 28 mm) measured in M-mode. D, Sh
measurements due to foreshortening of the vessel.

2 How I Do It
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General Advantages of Ultrasound
Even for those well versed in the dangers of excessive
fluid administration, determining how much fluid is too
much is complex. Volume status is extremely
challenging to assess by physical examination, and
although invasive hemodynamic monitoring could
theoretically be helpful, these tools are not available to
all patients and are not without their own inherent flaws
and risks. Point-of-care ultrasound (POCUS),
conversely, allows for the examination of multiple organ
systems, noninvasively, in real time, to be integrated
with other clinical parameters, and repeated serially.
Basic Principles
All of the techniques described in the following sections
assume proficiency in basic critical care ultrasound, and
a few require a more advanced skill set, including use of
spectral Doppler.13 As with all tools, these techniques
perform optimally when used in combination and when
integrated with other salient clinical parameters; each
has multiple pitfalls and caveats. For each of the four
techniques related to potential fluid benefit and the five
#

ss. A, Typical transducer position to assess the long-axis view of the IVC;
orientation marker oriented toward the patient’s head. B, Long-axis view
rium (number sign) can also be seen. C, Long-axis view of a dilated IVC,
ort-axis view of the IVC (arrow), which can be helpful with erroneous

Q13 Q14
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related to fluid risk, the relevant associated figure and
video should be consulted for a detailed technical
description of how to perform the maneuvers. Some
patients may not fall neatly into either category (of being
either FR or fluid overloaded), and both states can exist
simultaneously. These cases are particularly difficult, and
here an informed risk/benefit calculation regarding
fluids is both challenging and valuable.

Fluid Benefit Techniques: Assessment of Fluid
Responsiveness

Technique #1: Analysis of the Inferior Vena Cava: The
size and variability of the inferior vena cava (IVC) have
both been advanced as tools to help in determining FR
(Fig 1, Video 1). Smaller IVC size is believed to make an
FR state more likely and a larger size less so, but exact
cutoffs have been challenging to identify. Similarly, a
higher degree of IVC collapsibility (in spontaneously
breathing patients) or distensibility (in patients who are
mechanically ventilated) has been proposed to be
associated with FR. However, the evidence supporting
IVC analysis for FR is controversial, complex, and subject
to interpretation; it has been reviewed in detail
#

*

A B

C D

Figure 2 – A-D, Analysis of the superior vena cava (SVC) for fluid responsiven
the omniplane angle is rotated to approximately 90� (here 98�) to achieve a mid
(number sign) are seen. B, From the previous mid-esophageal two-chamber vi
achieved, showing the SVC (arrow) connecting to the right atrium (number si
analysis of a large, noncollapsible SVC (arrow); note the regular pulsatility here

chestjournal.org
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elsewhere.14 For patients who are spontaneously
breathing and those who are mechanically ventilated,
many small, single-center studies have yielded
contradictory results; recent meta-analyses have yielded
variable but generally unsupportive results.15 Perhaps
most importantly, the largest single study to date (by a
very large margin) was unsupportive of both IVC size and
variability for determining FR.16 In addition, there are
numerous technical challenges associated with measuring
the IVC accurately, including known inter- and intra-
rater variability of measurements and a series of common
confounding factors, including right ventricular (RV)
dysfunction and intraabdominal hypertension.14

Given the challenges and caveats noted here, use of the
IVC for determining FR must be approached with
significant caution. As with many tests in medicine, it is
likely to be most useful at extremes. Although the IVC
may provide useful information as part of an integrated
volume assessment, it is essential that the provider be
well versed in the test characteristics and limitations,
and that the data be considered as one piece of a holistic
POCUS and clinical assessment.17,18
#

ess. A, From the starting mid-esophageal four-chamber view (not shown),
-esophageal two-chamber view; the left ventricle (asterisk) and left atrium
ew, the physical transducer is rotated clockwise until the bi-caval view is
gn). C, M-mode analysis of a small, collapsible SVC (arrow). D, M-mode
(dashed arrows) represents cardiac contractility, not respiratory variation.
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Technique #2: Analysis of the Superior Vena Cava:
Assessing respiratory variation in the size of the superior
vena cava (SVC) is analogous to analyzing the IVC and

offers a mix of advantages and disadvantages (Fig 2,

Video 2). Its major disadvantage is that it requires a

transesophageal approach and is therefore generally

reserved for patients who are already intubated. It is an

invasive technique, albeit with an excellent associated

safely profile,19 and one requiring a skill set that is less

commonly available.20

On the positive side, use of the SVC avoids all confounding
elements associated with changes in intraabdominal

pressure and can be used in patients with irregular cardiac

rhythms. In addition, given that SVC is almost universally

deployed in patients who are intubated and sedated,

concerns regarding spontaneous respiratory efforts are

generally absent. Where studied, assessment of the SVC for

respiratory variability performs better than the IVC,

although the amount of data is limited.16,21 A change in the

size of the SVC of > 36% is a commonly cited cutoff,21

although lower values have also been proposed.16
  

 

 A

C

Figure 3 – A-D, Measurement of left ventricular outflow tract (LVOT) velocit
chamber view, with visualization of the LVOT (arrow). B, Pulsed wave Dopp
above the aortic valve, and the line of interrogation is positioned parallel to th
the LVOT Doppler waveform to derive the velocity time integral (here 17.4 cm
(zoomed-in; here 2.18 cm).

4 How I Do It
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Technique #3: Measurement of Left Ventricular
Outflow Tract Velocity Time Integral: The velocity
time integral (VTI) can be measured via a transthoracic
approach at the level of the left ventricular outflow tract
(LVOT) (Fig 3, Video 3). If one imagines a patient’s SV as
a cylinder of blood passing through the aortic valve with
each cardiac contraction, the VTI is the height of that
cylinder. Because the cross-sectional area (CSA) of the
cylinder at the level of the LVOT is essentially a fixed
value, the SV is perfectly correlated to the height of the
cylinder, the VTI. SV as estimated in this manner has been
shown to correlate well with other established techniques
such as Swan-Ganz catheterization. Once the VTI has
been measured, several useful FR techniques can be
deployed22; this technique, therefore, is better supported
by evidence than many of the other tools described in this
article. This tool can be applied to patients in atrial
fibrillation, but an average of multiple measurements must
be used to avoid overestimation or underestimation.

A baseline measure of VTI can be followed by a dynamic
maneuver to predict an FR state. If the patient’s VTI
increases with passive leg raise (PLR), they are likely to
 

 

B

D

y time integral to help in determining fluid responsiveness. A, Apical five-
ler interrogation of the LVOT. The interrogation window is placed just
e long-axis of the LVOT itself. C, Measuring the area under the curve of
). D, Diameter of the LVOT, measured from a parasternal long-axis view
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be FR; a cutoff of 10% or 15% is typically used.5 When
PLR is contraindicated and the risks of fluid
administration are high, a change in VTI after 50 mL of
crystalloid is rapidly infused over 10 s or a VTI
difference noted between an end-inspiratory and end-
expiratory hold can also be used to test the effect of
alterations in preload to predict fluid
responsiveness,23,24 although these newer techniques
can be technically challenging to perform and have not
yet been robustly studied. Otherwise, the VTI can
be measured prior to and following a fluid bolus
(generally 500 mL). If the VTI increases (again a cutoff
of either 10% or 15% is typically used), this action
suggests that the patient was in an FR state, and the
process can be repeated until the VTI no longer
increases with a bolus.

A related technique involves using the change in the
maximum velocity of blood flow at the LVOT with
respiration. This tool is analogous to systolic pressure
variation as typically measured by using an arterial
catheter and can be of interest in patients who do not
have an invasive BP-monitoring device.
FAA

C

Figure 4 – A-D, Estimation of fluid responsiveness by using carotid flow tim
transducer is placed at approximately the level of the thyroid cartilage, with th
(arrow) in long-axis. The transducer has been angled to avoid the artery layi
been angled to make it more parallel to the long-axis of the artery, and ang
Doppler waveform. D, Measuring the systolic time (solid arrow; here 305 mi

chestjournal.org
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If an estimate of SV is wanted, the diameter (d) of the
LVOT is measured from a parasternal long-axis view,
and this value is used to calculate the CSA:

CSA ¼ p ðd
2
Þ2

The CSA is then multiplied by the VTI to yield an
estimated SV:

SV ¼ CSA � VTI

Technique #4: Estimation of Fluid Responsiveness Via
Carotid Flow Time: Although using LVOT VTI to
estimate SV is a very well-established and validated
technique, it can be time-consuming (Fig 4, Video 4). As
such, efforts have been made to identify more
straightforward techniques that are not as technically

difficult. One such option is the corrected carotid flow

time index (CFTI), a noninvasive surface measurement

of systolic blood flow at the level of the carotid artery, a

structure that is typically easy to image.25

Here, a pulsed-wave Doppler waveform of carotid blood
flow is generated, and the flow time between the onset of
B

D

e measurement. A, Transducer position for carotid analysis. The linear
e orientation marker pointed toward the patient’s head. B, Carotid artery
ng perfectly horizontally, the Doppler interrogation line (green) has also
le correction software (white line) has been applied. C, Carotid artery
lliseconds) and total cycle time (dashed arrow). Q15
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systole and the closure of the aortic valve (the dicrotic

notch) is measured, as is the duration of the full cardiac

cycle. The value of the CFTI is calculated as:

CFTI ¼ Systolic flow time
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cardiac cycle time

p

Once this value is obtained, a PLR maneuver may be
performed, and the CFTI is re-measured. An FR state
would be associated with an increase in the CFTI value
by virtue of a longer systolic flow time, due to a slightly
longer time required to eject the additional blood. This
time is “corrected” for any changes in heart rate by
indexing it to the total cycle time.25 Administration of an
actual fluid bolus could be substituted for a PLR,
analogous to the process described earlier for the LVOT
VTI. The primary difficulty lies in determining the ideal
cutoff value to determine a positive test; when a
relatively high value is used (eg, a change in CFTI of
25% following PLR26), it results in a very high specificity
but a low sensitivity. Cutoff values of 10% to 15% are
more typical.25,27,28 There are a paucity of trials assessing
A B

C

Figure 5 – A-D, Analysis of inferior vena cava (IVC) size and variability for
view of the IVC; here a phased-array transducer is held just below the xiphoid
B, Long-axis view of a thin IVC (arrow) in B-mode; the hepatic vein (dashed a
of a dilated IVC, with the end-expiratory diameter (here 28 mm) measured i
with erroneous measurements due to foreshortening of the vessel.

6 How I Do It
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the performance of carotid flow time measurements,27

and more research is required.

Fluid Risk Techniques: Assessment of Venous
Congestion

Technique #5: IVC Size and Variability: The
evaluation of the IVC for the purpose of determining FR
was discussed earlier. On the flip side of this coin, a large,
static IVC may suggest congestion and make harm from
fluid administration more likely, but precise cutoffs vary
widely29 (Fig 5, Video 5). A modest correlation exists
between larger IVC size and central venous pressure;
elevated central venous pressure, in turn, is associated
with worse outcomes.11,30,31 A plethoric IVC is also a
prerequisite for solid organ assessment of venous
congestion, as described later in Techniques 8 and 9.

In spontaneously breathing patients, a dilated IVC
without respiratory variation may point to venous
congestion, but this does not necessarily apply to
patients who are mechanically ventilated, particularly
those with high positive end-expiratory pressures.
D

venous congestion. A, Typical transducer position to assess the long-axis
process with the orientation marker oriented toward the patient’s head.

rrow) and right atrium (number sign) can also be seen. C, Long-axis view
n M-mode. D, Short-axis view of the IVC (arrow), which can be helpful

Q16
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Figure 6 – A-H, Right ventricular assessment. A, Normal right ventricular size, apical four-chamber view; the right ventricle (RV) (number sign) is
smaller than the left ventricle (asterisk). B, Moderately dilated RV, apical four-chamber view; the RV (number sign) is roughly the same size as the left
ventricle (asterisk). C, Severely dilated RV; apical four-chamber view. The RV (number sign) is significantly larger than the left ventricle (asterisk). D,
Normal tricuspid annular plane of systolic excursion (here approximately 23 mm), apical four-chamber view. E, Abnormal tricuspid annular plane of
systolic excursion (here approximately 11 mm), apical four-chamber view. F, D-shaped septum (arrow), parasternal short-axis view. G, Normal right
ventricular free wall thickness (between arrows; here approximately 5 mm), sub-xiphoid four-chamber view. H, Abnormal right ventricular free wall
thickness (between arrows; here approximately 18 mm), sub-xiphoid four-chamber view.
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Technique #6: RV Assessment: Unlike the left ventricle,
the right ventricle is thin-walled and ill-equipped to deal
with acute increases in pressure or volume, whether due
to fluid administration or acute insults such as hypoxemia
or pulmonary embolism (Fig 6, Video 6). Ultrasound
evaluation of the right ventricle, therefore, plays a key role
in determining potential harms from fluid therapy. A
dysfunctional right ventricle will respond poorly to
additional volume with further dilation, worsening
systolic function, and decreased stroke volume, and will
subsequently impair LV filling. This can lead a deadly
spiral of systemic hypotension, right ventricular (RV)
ischemia, and further worsening RV function.32 Video 6
describes techniques for evaluating RV size and function.

The primary caveat with RV assessment as it relates to
the decision to give or withhold IV fluids is that it is very
challenging, and often impossible, to determine the
chronicity of RV changes. Patients with chronic RV
pathology and elevated right-sided pressures may
tolerate and even potentially benefit from fluids despite a
chestjournal.org
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dilated right ventricle, as they have had the opportunity
to adapt over time and shift their individual Frank-
Starling curves. RV hypertrophy can be helpful in
signaling a degree of chronicity, although it remains
challenging to exclude an acute-on-chronic insult.
Analogously, high systolic pulmonary artery pressures
(a cutoff of 60 mm Hg is often used) suggest a more
chronic process. It is conceptually helpful, in these cases,
to return to the principle of a risk/benefit analysis: in the
presence of an impaired right ventricle, the potential risk
of IV fluids is undoubtedly higher, and thus the
perceived benefit would need to be more substantial to
justify a trial of fluid therapy.

Finally, it should be noted that other cardiac ultrasound
techniques may help inform the potential risks of fluid
therapy. In particular, the evaluation of LV systolic and
diastolic function may help clarify how wide or narrow a
therapeutic window may be present; a heart with
significant systolic and/or diastolic dysfunction will more
quickly exhibit signs of organ congestion and fluid harm.
7
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Figure 6 – Continued.
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Figure 7 – A-D, Thoracic ultrasound for lung congestion. A, Typical A-lines, here generated with the phased-array transducer oriented perpendicular to
the rib and placed at the level of the second intercostal space in the mi-clavicular line. B, Typical B-lines; here the transducer is in the same position but
oriented parallel to the ribs. C, Lung consolidation (asterisk) above the diaphragm (arrow). D, Pleural effusion (arrow) with associated consolidated
lung (asterisk).
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Figure 8 – A-F, Hepatic and portal vein assessment for congestion. A, Normal hepatic vein Doppler waveform. The S-wave is larger than the D-wave. B,
Abnormal hepatic vein Doppler waveform. The D wave is larger than the S wave. C, Very abnormal hepatic vein Doppler waveform; S-wave reversal. D,
Normal portal vein Doppler waveform; continuous hepato-petal flow with low variability. E, Abnormal portal vein Doppler waveform; increased
pulsatility. F, Very abnormal portal vein Doppler waveform; absent diastolic flow (number sign).
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A detailed description of the techniques used to evaluate

the left heart is beyond the scope of the current article.

Technique #7: Thoracic Ultrasound for Lung
Congestion: Lung ultrasound (LUS) is a well-established
tool for the detection of extravascular lung water,
displaying excellent test characteristics and easily
outperforming chest radiograph, with a reported
sensitivity of 88% and specificity of 90% in a meta-
analysis33 (Fig 7, Video 7). The LUS examination for
pulmonary edema is centered on the detection of B-lines:
these well-defined, hyperechoic, vertical ultrasound
artifacts originate from the pleural line and vary with
chestjournal.org
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respiration, extend the length of the ultrasound screen,
and obliterate horizontal A-lines. Other features that may
be suggestive of fluid overload include pleural effusions,
particularly if bilateral. Specific LUS scanning protocols
vary, and the precise protocol is less important than
obtaining a representative sample of the upper, middle,
and lower aspects of both lungs.34-36

It is important to note that B-lines are reflective of an
interstitial process and may be seen in a variety of
conditions other than cardiogenic pulmonary edema,
including pneumonia, interstitial lung disease,
pulmonary hemorrhage, and non-cardiogenic
9
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Figure 9 – A-E, Renal vascular assessment for congestion. A, Normal intrarenal arterial Doppler waveform, with gentle systolic upstroke (number sign)
and preserved end-diastolic flow (asterisk). B, Abnormal intra-renal arterial Doppler waveform with higher velocity in systole (number sign) and lower
velocity in diastole (asterisk). C, Kidney in long-axis, with color Doppler to assist in locating vessels. D, Normal intra-renal venous Doppler waveform,
with continuous flow below the baseline (arrow). E, Very abnormal intra-renal venous Doppler waveform, with monophasic waveform (arrow).
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pulmonary edema, among others.37 B-lines consistent
with pulmonary edema are typically diffusely

symmetrical with a dependent gradient, arise from a

smooth pleural line, and are often accompanied by small

simple pleural effusions. The presence of B-lines

consistent with pulmonary edema should be taken as an

indication that the patient already has an elevated left

atrial pressure and that further IV fluid will likely

worsen pulmonary congestion. Worsening B-lines with

further fluid therapy can reinforce this concept. Patients

with B-lines from other causes, or with other evident
10 How I Do It
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pulmonary pathology such as consolidations or
significant effusions, will also be at higher risk when
receiving fluids, given their already deranged respiratory
physiology.

Technique #8: Hepatic and Portal Vein Assessment
for Congestion: Interrogating intraabdominal solid
organ vessels with pulsed-wave Doppler to assess venous
congestion is a relatively new and advanced application
of POCUS (Fig 8, Video 8). Although based on solid
physiological rationale, many unanswered questions
remain, and the populations in which it has been studied
[ -#- CHE ST - 2 0 2 1 ]
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are primarily limited to heart failure and cardiac surgery
patients. Recently, a scanning protocol called Venous
Excess Ultrasound (VExUS) has been proposed, and was
found to be predictive of acute kidney injury in a
postcardiac surgery population.38 While waiting for
further studies in broader patient populations, this tool
can be considered a useful addition to the POCUS
assessment for venous congestion, perhaps serving as an
early warning sign for stopping further fluid therapy. It
should be noted that these techniques, along with
interrogation of the intrarenal vessels (Technique #9),
are advanced applications and should be undertaken
with appropriate training and an understanding of the
pitfalls and caveats associated with each examination.

A technical description of hepatic venous Doppler
analysis,39 focusing on the S- and D-waves, is presented
in Video 8. An explanation of portal venous Doppler
analysis is also provided, with a focus on the pulsatility
fraction (PF):
PF ¼ maximum blood velocity � minimum blood velocity
maximum blood velocity
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Given the caveats and potential confounders for both the
hepatic and portal waveforms, they are best performed
as a group, along with the intrarenal venous
interrogation described in the following section, and
interpreted holistically. Signs of congestion in multiple
solid organ tracings paint a much stronger picture of
congestion, which is a potential harm with additional
fluid therapy, than a single abnormal waveform.
TABLE 1 ] Summary of Techniques for Determining Fluid R

Technique Key Point Findings Sugges

IVC Potentially useful in extremes
(eg, tiny IVC, very large
IVC)

Small IVC (< 1
High variability
(> 50% com

SVC Limited evidence suggests
better performance than
IVC

High variability
(> 36% com

VTI at
LVOT

Correlates well with stroke
volume as calculated by
other methods

Significant cha
leg raise or fl
commonly us

Carotid
flow time
integral

Generally easier to perform
than LVOT VTI

Significant cha
leg raise or fl
15% commo

Relevant references are given in the text. CFTI ¼ carotid flow time index; IVC ¼
vena cava; VTI ¼ velocity time integral.
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Technique #9: Renal Vascular Assessment for
Congestion: The second half of the solid organ Doppler
assessment for venous congestion can include evaluation

of the intrarenal vessels40,41 (Fig 9, Video 9). Although

both the intrarenal arteries and intrarenal veins can be

interrogated in a manner similar to the hepatic and

portal veins, this is typically more challenging given the

small size of the target vessels. Because of the lack of

available evidence, they are talked about only briefly;

Video 9 presents a discussion.

Doppler analysis of the renal arterial inflow is
particularly discouraged, partly due to technical

limitations common to critically ill patients, and partly

due to the fact that measurements (most commonly the

renal resistive index) can be confounded by intrinsic

renal pathology. Renal venous Doppler, although also

difficult, is at least a component of the aforementioned

VExUS methodology.
Case Resolution
Ultrasound analysis revealed an IVC that measured
22 mm at end-expiration, with a 10% collapse on
inspiration. Cardiac examination revealed a moderately
dilated right ventricle with grossly normal function and
a normally positioned interventricular septum. LVOT
VTI was calculated prior to and following a PLR, with
minimal (5%) change. LUS examination revealed
esponsiveness Q11 Q17

tive of Fluid Responsiveness Caveat

.5 cm commonly used)
of IVC with respiration
monly used)

Many technical challenges and
confounding factors

of SVC with respiration
monly used)

Required trans-esophageal
echocardiography

nge in VTI with passive
uid bolus (> 10%
ed)

Labor intensive to perform and
repeat, more advanced skill
set required

nge in CFTI with passive
uid bolus (> 10%-
nly used)

Poor evidence base, concerns
about reproducibility

inferior vena cava; LVOT ¼ left ventricular outflow tract; SVC ¼ superior

11
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TABLE 2 ] Summary of Techniques for Assessing Potential Harms of Fluid Therapy

Technique Key Point Findings Suggestive of Congestion Caveat

IVC Potentially useful in extremes (eg,
tiny IVC, very large IVC)

Large IVC (> 2.5 cm commonly used)
Low variability of IVC with respiration
(< 50% commonly used)

Many technical
challenges and
confounding
factors

Cardiac
ultrasound
(focus on right
heart)

Complex and somewhat subjective
examination

Dilated RV
Dysfunctional RV
Shift in interventricular septum toward
the left
Low TAPSE

Difficult to separate
acute from
chronic findings

Lung ultrasound Thorough examination covering
upper, middle, and lower regions
on both sides is essential

B-lines, especially worsening with
fluids and in a pattern typical for
cardiogenic pulmonary edema

Presence of B-lines
is nonspecific

Hepatic and
portal veins

Described as part of the VExUS
examination

D wave > S wave (hepatic vein)
Pulsatility fraction > 0.5 (portal vein)

Technically difficult,
poor evidence
base

Intrarenal vein Described as part of the VExUS
examination

Pulsatile, biphasic, and eventually
monophasic renal vein flow

Technically very
difficult, poor
evidence base

Relevant references are given in the text. IVC ¼ inferior vena cava; RV ¼ right ventricle; TAPSE ¼ tricuspid annular plane of systolic excursion; VExUS ¼
venous excess ultrasound.
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extensive B-lines present bilaterally with spared apices.
The hepatic vein waveform was abnormal, exhibiting a
D > S pattern. Portal venous assessment revealed
increased pulsatility. Assessment of the renal
parenchymal vessels was unsuccessful.

After repeating the patient’s physical examination and
laboratory assessment, the treating physician
remained convinced that the state of shock had not
resolved. Data derived from the ultrasound examination
suggested that the patient was less likely to be FR,
and, conversely, several features indicated a higher
risk with additional fluid therapy. Consequently, the
treating physician elected not to give further IV fluids,
to begin vasoactive agents, and to reassess the situation
frequently.
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Conclusions
The appropriate titration of fluid therapy is one of the
most challenging aspects of caring for acutely unwell
patients. Given the increasing recognition of the harms
associated with over-resuscitation, clinicians must be
thoughtful in their prescription of IV fluids. Three
questions should be addressed sequentially: First, is the
patient in a form of shock, with evidence of end-organ
hypoxia, that would benefit from an increased cardiac
output to increase tissue oxygen delivery? Second, is the
patient in a fluid-responsive state whereby the
administration of IV fluids and preload augmentation
will in fact result in an increased in cardiac output?
12 How I Do It

REV 5.6.0 DTD � CHEST4384_proof � 21 A
Finally, is there evidence of multiorgan venous
congestion suggesting that fluid therapy could cause the
patient harm?

Overall, the decision to give IV fluids, like any decision
in medicine, comes back to careful consideration of the
possible risks and benefits. By using POCUS to better
understand the potential harms associated with fluid
administration, we can make more informed clinical
decisions and improve the care of acutely unwell
patients.
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